0=2(x^2+3x-360)

Simple and best practice solution for 0=2(x^2+3x-360) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=2(x^2+3x-360) equation:



0=2(x^2+3x-360)
We move all terms to the left:
0-(2(x^2+3x-360))=0
We add all the numbers together, and all the variables
-(2(x^2+3x-360))=0
We calculate terms in parentheses: -(2(x^2+3x-360)), so:
2(x^2+3x-360)
We multiply parentheses
2x^2+6x-720
Back to the equation:
-(2x^2+6x-720)
We get rid of parentheses
-2x^2-6x+720=0
a = -2; b = -6; c = +720;
Δ = b2-4ac
Δ = -62-4·(-2)·720
Δ = 5796
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5796}=\sqrt{36*161}=\sqrt{36}*\sqrt{161}=6\sqrt{161}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{161}}{2*-2}=\frac{6-6\sqrt{161}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{161}}{2*-2}=\frac{6+6\sqrt{161}}{-4} $

See similar equations:

| 3k-12=99 | | 3(5-x)=30 | | 166-y=257 | | 5x-50=175 | | 12(2b+3)-10(2+3b)=16-6b | | n-4.2=7.8= | | 2m+24=40 | | (1)(3x+3)+(1)/(x+1)=(1)/(6) | | 2(8-5k)-2=2(-5k+7) | | 56=t×8 | | 6/8=j/8 | | 21t=100 | | 1x+48+72+60=180 | | –3(7x+5)+6x=–3(1+6x) | | 5k+20=60 | | −0.4(m+3)=4. | | 10x(12x)=360 | | 3.4=-1+x/2 | | 10-x+5=4-2x+4 | | 45=98-0.54t | | 7(y-2)=3y-21 | | 8×t=56 | | 4x+(2.4-2x)=228 | | X=17-0,5y | | -2u-14=-12 | | 15+2b=35 | | -4c-9c=28 | | q2−30=–30 | | f2=18 | | -4x+27=-7 | | 6+10x=-84 | | x/2+16=18 |

Equations solver categories